River Velocity through LSPTV Technique using UAVs

Authors

DOI:

https://doi.org/10.22395/rium.v21n41a5

Keywords:

velocimetry of particles, surface velocities, drone, tracers, LS PTV, mean velocity

Abstract

This paper presented the analysis of the difference between two techniques for the measurement of the velocity of water flows using the non-intrusive large-scale particle tracking velocimetry technique (LS PTV) and various intrusive techniques like digital water velocity meters.

This research analyzes the difference between two techniques for measuring the velocity of water flows, using the non-intrusive large-scale particle tracking velocimetry technique (LSPTV), and intrusive techniques such as electromagnetic windlass and propeller windlass. A fluvial characterization of the river is conducted to classify it in relation to various fluvial parameters. The technique is applied in the stretch of the river, using two types of Unmanned Aerial Vehicles (UAVs): DJI Inspire II and DJI Spark, using two types of tracers, to obtain velocity fields in the study section. Comparing the two techniques it is evident that the tracers that best adapted to the model are the orange peel with the Spark drone with a reliability of 91 %, compared to the tracers of plastic covers with the same vehicle with a reliability of 81 %. The LSPTV technique has higher reliability compared to conventional methods, even more when depth corrections are made; therefore, it would reduce the risks for operators and/or damage to equipment that needs to be introduced to the fluid.

Downloads

Download data is not yet available.

Author Biographies

Jorge Andrés Rosero Legarda, Estudiante

Environmental Engineer

Angela Nathalia Argoti Santacruz, Ingeniera ambiental

 Environmental Engineer

Francisco Ricardo Mafla Chamorro, Universidad Mariana

MSc in Engineering

References

M. Bieri, J. Jenzer, S. Kantoush, and J.L. Boillat, “Large Scale Particle Image Velocimetry applications for complex free surface flows in river and dam engineeringâ€, Paper present at 33rd Congress. Int. Assoc. of Hydraulic, pp. 604-611, 2009. Available: https://goo.gl/NUE9Rq.

J. Gutiérrez, “Evaluación de la técnica de LS PIV para estimar la velocidad superficial del agua en obras hidráulicasâ€, Instituto Mexicano de Tecnología del Agua, pp. 1-54, 2011. Available: https://goo.gl/kTp6Sx.

J.D. Martinez and F.J. Gonzáles, “Velocímetro de partículas basado en imágenes digitalesâ€, Instituto de Investigación en Comunicación Óptica, pp. 1-5, 2006. Available: https://rb.gy/qzpaew.

F. Tauro, R. Piscopia and S. Grimaldi. “PTV-Stream: A simplified particle tracking velocimetry framework for stream surface flow monitoringâ€, CATENA, vol. 172, 2018. https://doi.org/10.1016/j.catena.2018.09.009

A. Patalano. PTVlab (Particle Tracking Velocimetry - lab). Available: http://goo.gl/PM8KuR

R. Aleixo, S. Soares-Frazão, and Y. Zech. “Velocity-field measurements in a dam-break flow using a PTV Voronoï imaging techniqueâ€. Exp. Fluids, vol. 50, pp. 1633–1649, 2011. https://doi.org/10.1007/s00348-010-1021-y.

D. Rosgen, “Fundamentals of Rosgen Stream Classification Systemâ€, U.S Environmental Protection Agency, 1996. Available: https://goo.gl/3n3KdH

OTT Hidromet GmbH, OTT MF pro técnica moderna para condiciones difíciles, Available: https://goo.gl/VFgte2

A. Patalano, M. García, N. Guillén, C. García, E. Díaz, A. Rodríguez and A. Ravelo, “Evaluación experimental de la técnica de velocimetría por seguimiento de partículas a gran escala para la determinación de caudales en ríos serranosâ€, Aqua-LAC, vol. 6 no.1, pp. 17 – 24, 2014. Available: https://goo.gl/SmvgtG.

C. Pagano, F. Tauro, S. Grimaldi, and M. Porfiri, “Development and testing of an unmanned aerial vehicle for large scale particle image velocimetryâ€, Conference Sponsors: Dynamic Systems and Control Division San Antonio, pp. 1-7, 2014. https://doi.org/10.1115/DSCC2014-58

T. Vaschalde, “Caracterización hidrodinámica del flujo de ingreso a las obras de evacuación de excedentes de la Presa Los Molinos, Jujuyâ€, Master Thesis. Centro de Estudios y Tecnología del Agua, Universidad Nacional de Córdoba, pp. 1-304, 2013. URL: http://hdl.handle.net/11086/808.

W. Brevis, Y. Niño and G. Jirka, “Integrating cross-correlation and relaxation algorithms for particle tracking velocimetryâ€, 2010. https:/doi.org/10.1007/s00348-010-0907-z.

C. Masafu, R.Williams, X. Shi, Q. Yuan and M. Trigg. “Unpiloted Aerial Vehicle (UAV) image velocimetry for validation of two-dimensional hydraulic model simulationsâ€. Journal of Hydrology. vol. 612, 2022. https://doi.org/10.1016/j.jhydrol.2022.128217.

R. Cheng, J. Gartner, R. Mason, J. Costa, W. Plant, K. Spicer, et al. “Evaluating a RadarBased, Non-Contact Streamflow Measurement System in the San Joaquin River at Vernalis, Californiaâ€. Open-File Report 2004-1015, 2004. Doi: 10.3133/ofr20041015.

C. Goodwin, “Fluvial Classification: Neanderthal Necessity or Needless Normalcyâ€, In: Wildland Hydrology, American Water Resources Association, pp. 229-236, 1999. Available: https://goo.gl/7dk9YS.

J.A. Sánchez, A. Olledo, D.Ballarin, D. Mora, R. Montorio, M. Zuñiga, et al., “Aplicación de la clasificación de Rosgen al río Gállego y protocolo para su aplicación a los ríos de la cuenca del Ebroâ€, Universidad de Zaragoza. pp. 6-37, 2004. Available: https://goo.gl/PfUCE8.

M. Gonzales, D. García, “Caracterización jerárquica de los ríos españoles. Propuesta de tipología de tramos fluviales para su clasificación atendiendo a la directiva marco del aguaâ€, Limnetica vol. 25, pp. 81-98, 2006. Doi: 10.23818/limn.25.47.

R. Alonso, “Características hidráulicas y geomorfológicas de ríos de montañaâ€, Cimbra, no. 362, pp. 20-23, 2005. URL: http://hdl.handle.net/10459.1/46509.

J. Arellano, “La velocidad y el esfuerzo de corte inverso en dos secuencias consecutivas del tipo pozón-rápido a través del modelo numérico tridimensional Delft 3D-FLOWâ€, Master Thesis. Universidad Católica de Concepción Chile, pp. 3-4, 2016. URL: http://repositoriodigital.ucsc.cl/handle/25022009/1191

N. Guillén, “Estudios avanzados para el diseño hidrológico e hidráulico de infraestructura hídricaâ€, Master Thesis. Universidad Nacional de Córdoba, pp. 90-102, 2014. Available: URL: http://hdl.handle.net/11086/1773.

Aleixo, R., Soares-Frazão, S., and Zech, Y. “Velocity-field measurements in a dam-break flow using a PTV Voronoï imaging techniqueâ€. Experiments in Fluids, vo. 6, pp. 1633–1649, 2011. https://doi.org/10.1007/s00348-010-1021-y

Lobo, A. P. “Implementación de la técnica experimental de velocimetría por seguimiento de partículas (PTV) para cuantificar el recurso hídrico superficial en cursos fluviales de la provincia de Catamarcaâ€. Master Thesis. Universidad Nacional del Litoral, pp. 240, 2019. Available: URL: http://hdl.handle.net/11185/1195.

H. Tang, “An improved PTV system for large-scale physical river modelâ€. Journal of Hydrodynamicsvol. 6, pp. 669-678. https://doi.org/10.1016/S1001-6058(09)60001-9

Tang, Hw., Chen, C., Chen, H., Huang, J., “Streamflow Properties from Time Series of Surface Velocity and Stageâ€, Journal of Hydraulic Engineering, Vol. 131 no. 8, pp. 657–664, https://doi.org/10.1016/S1001-6058(09)60001-9.

Johnson, E., and Cowen, E. “Remote Determination of the Velocity Index and Meanâ€. Water

Resources Research, vol. 53, pp. 7521-7535, 2017. Doi: 10.1002/2017WR020504

Published

2022-12-27

How to Cite

Rosero Legarda, J. A. ., Argoti Santacruz, A. N., & Mafla Chamorro, F. R. (2022). River Velocity through LSPTV Technique using UAVs. Revista Ingenierías Universidad De Medellín, 21(41), 1–17. https://doi.org/10.22395/rium.v21n41a5