Finite Element Analysis of An Evaporation System to Synthesize Kesterite thin Films

Authors

  • Carlos Eduardo Rondón Almeyda Universidad Industrial de Santander
  • Monica Botero Universidad Industrial de Santander
  • Rogelio Ospina Universidad Industrial de Santander

DOI:

https://doi.org/10.22395/rium.v20n38a3

Keywords:

absorber-layer, Comsol, CZTS, evaporation, finite-elements, heat-distribution, kesterite, thin film solar cells

Abstract

Currently, there is an interest within the scientific community in thin-film solar cells with a Kesterite (Cu2ZnSnS4) type absorber layer, since they report a theoretical efficiency greater than 32 %. The synthesis of Kesterites by evaporation has allowed for efficiencies at the laboratory level of 11.6 %. Although these are good results, the design of the evaporation chamber and the distribution of the electrodes is essential to control synthesis parameters and evaporate each precursor in the corresponding stage. This project seeks to design an evaporation chamber that can achieve a vacuum of 10-5 mbar, increase the deposition surface and avoid each precursor evaporation in a non-corresponding stage. This last objective was studied using Comsol multiphysics R. (licensed product) software, with the adequate disposition of metallic precursors (zinc, copper, and tin) determined by analyzing heat distribution. It was concluded that the lower the evaporation temperature of the precursor, the smaller the height of the copper electrode in the system. This is because, with a lower height the concentration of heat in the container is lower.

Downloads

Download data is not yet available.

Author Biographies

Carlos Eduardo Rondón Almeyda, Universidad Industrial de Santander

Master in Materials Engineering, Universidad Industrial de Santander.

Monica Botero , Universidad Industrial de Santander

Doctor in Physical Sciences. Plant teacher Universidad Industrial de Santander.

Rogelio Ospina, Universidad Industrial de Santander

Doctor in Materials Engineering, Science and Technology. Plant teacher Universidad Industrial de Santander.

References

R. H. Bube, Photovoltaic materials: properties of semiconductor materials. Imperial Collage press, 1998.

J. C. Gonzáles, A. Abelenda, and M.Sanchez.Caracterización de capas delgadas de Cu2ZnSnS4 para aplicaciones fotovoltaicas. Habana: Universidad de la Habana, 2016.

S. Xiangbo, J. Xu, L. Ming, L. Weidong, L. Xi, and Z. Hua. “A review on development prospect of CZTS based thin film solar cellsâ€. HindawiLimited; International Journal of Photoenergy, vol 2014, p 1-11, 2014. http://dx.doi.org/10.1155/2014/613173

S. Thiruvenkadam, et al.,“Effect of Zn/Sn molar ratio on the microstructural and optical properties of Cu2Zn1-xSnxS4 thin films prepared by spray pyrolysis techniqueâ€. Physica B: Condensed Matter, vol 533, pp 22-27. https://doi.org/10.1016/j.physb.2017.12.065

J. B.Carda, T.Stoyanova, and R.Martí. “Obtención de estructuras calcopirita (CIGS) y kesterita (CZTS) como absorventes para dispositivos fotovoltaicos de capa fina mediante métodos de síntesis de bajo costeâ€. Ph. D. dissertation. Castellon de la Plana. Universitat Jaume I de Castellon, Castellon, 2016, p 228.

Y. P. Lin, Y. F. Chi, T. E. Hsieh, Y. C. Chen, and K.P. Huang. “Preparation of Cu2ZnSnS4(CZTS) sputtering target and its application to the fabrication of CZTS thin-film solar cells.†Journal of Alloys and Compounds, vol. 654, pp. 498-508. 2016. 10.1016/j.jallcom.2015.09.111

U. Chalapathi, S. Uthanna, and V. Sundara Raja.“Growth of Cu2ZnSnS4 thin films by co-evaporation-annealing route: effect of annealing temperature and durationâ€. Journal of Materials Science: Materials in Electronics, vol. 27, pp. 1048-1057, 2018. https://doi.org/10.1007/s10854-017-8005-0

T. Tunaka, et al. “Influence of composition ratio on properties of Cu2ZnSnS4 thin film fabricated by co-evaporationâ€. Thin Solid Films, vol. 518, pp. S29-S33, 2010. https://doi.org/10.1016/j.tsf.2010.03.026.

E. Garcia Llamas, et al. “Cu2ZnSnS4 thin film solar cells grown by fast thermal evaporation and thermal treatment.†Solar Energy, vol. 141, pp. 236-241. 2017. http://dx.doi.org/10.1016/j.solener.2016.11.035

M. Neuschitzer, E. Saucedo, and A. Pérez. Development of Cu2ZnSnS4 b ased t hin fi lm solar cells by PVD and chemical based processes. Ph. D. dissertation. España. Barcelona. Universidad de Barcelona, 2016, p 138.

S. Y. Lee, et al. .“Cu2ZnSnS4 thin-film solar cells by thermal co-evaporation with 11.6 % efficiency and improved minority carrier diffusion lengthâ€. Advance Energy Materials, vol. 5. 2015. https://doi.org/10.1002/aenm.201401372

X. Fontané Sanchez, A. Pérez Rodriguez, and V.Izquerdo Roca.Caracterización por espectroscopia Raman de semiconductores Cu2ZnSnS4 para nuevas tecnologías fotovoltaicas, Barcelona: Universidad de Barcelona, 2011, pp. 138.

Shiyou C. “Cu2ZnSnS4 Cu2Zn(SnSe)4, and related materials.†Semiconductor Materials for Solar Photovoltaic Cells, vol 218, pp. 75-103, 2016.

L. Escobar Alarcón, E. Rincón Mejía and S. Chirino Ortega. Diseño de una cámara para el depósito de películas delgadas por ablación laser. Ph. D. dissertation. México, Universidad Autónoma del Estado de México, 2001, pp. 4.

C. Villamizar and J. Duarte. “Construcción de sistemas de presión en el intervalo de medio y alto vacío.†MET y FLU. pp. 35-47. 2019.

I. Gutiérrez Ortuño, Tratamiento y modificaciones de superficiales del acero. Provincia de Cádiz: Universidad de Cádiz, 2009, pp. 41.

M. Hurtado, G. Gordillo and E. Romero Malagón. Síntesis y caracterización de películas delgada del semiconductor Cu2ZnSnS4 y su uso como capa absorbente en celdas solares. Bogotá D.C: Universidad Nacional de Colombia. 2014. pp. 42.

Downloads

Published

2021-03-15

How to Cite

Rondón Almeyda, C. E., Botero Londoño, M. A. ., & Ospina Ospina, R. . (2021). Finite Element Analysis of An Evaporation System to Synthesize Kesterite thin Films. Revista Ingenierías Universidad De Medellín, 20(38), 51–66. https://doi.org/10.22395/rium.v20n38a3