Morphology of chars of bagasse-coal mixtures: effect of particle size and concentration of bagasse

Authors

DOI:

https://doi.org/10.22395/rium.v21n40a4

Keywords:

coal, bagasse, morphological analysis, particle size, surface area, devolatilization, synergy

Abstract

In this work, the char morphology from coal-sugarcane bagasse with concentrations of 0, 25, 50, 75 and 100 % w/w and particle sizes -0.25 mm and -20 mm was evaluated. The samples were fed to a devolatilization process at 900 °C in a tubular drop reactor (-0.25 mm) and a batch-type fixed bed reactor (-20 mm). The morphology of the char was determined through image analysis. The surface area was evaluated by BET analysis for particle size -0.25 mm. The results showed that for particle sizes -20 mm synergistic effects were obtained towards the generation of reactive morphologies (thin walls + thick walls) with the increase in bagasse concentration. It was found that coal generated a higher concentration of thick and solid wall morphologies.

Downloads

Download data is not yet available.

Author Biographies

Edward Andrés García-Saavedra, Universidad del Valle

Grupo de Ciencia y Tecnología del Carbón. Facultad de Ingeniería. Universidad del Valle. Ciudad Universitaria
Meléndez, Calle13 # 100-00. A. A. 25360. Cali, Colombia. Correo electrónico: edward.garcia@correounivalle.
edu.co. Orcid: http://orcid.org/0000-0001-8137-5418

Alejandra Torres-Velasco

Grupo de Ciencia y Tecnología del Carbón. Facultad de Ingeniería. Universidad del Valle. Ciudad Universitaria
Meléndez, Calle13 # 100-00. A. A. 25360. Cali, Colombia. Correo electrónico: alejandra.torres@correounivalle.
edu.co Orcid: http://orcid.org/ 0000-0003-4133-9716

Cristian Dubiany Medina-Ramírez

Grupo de Ciencia y Tecnología del Carbón. Facultad de Ingeniería. Universidad del Valle. Ciudad Universitaria
Meléndez, Calle13 # 100-00. A. A. 25360. Cali, Colombia. Correo electrónico: medina.cristian@correounivalle.
edu.co Orcid: http://orcid.org/ 000-0003-1428-7025

Juan Manuel Barraza-Burgos

Grupo de Ciencia y Tecnología del Carbón. Facultad de Ingeniería. Universidad del Valle. Ciudad Universitaria
Meléndez, Calle13 # 100-00. A. A. 25360. Cali, Colombia. Correo electrónico juan.barraza@correounivalle.
edu.co. Orcid: https://orcid.org/0000-0001-8951-6975

Juan Sebastián Guerrero-Pérez

Grupo de Ciencia y Tecnología del Carbón. Facultad de Ingeniería. Universidad del Valle. Ciudad Universitaria
Meléndez, Calle13 # 100-00. A. A. 25360. Cali, Colombia. Correo electrónico: juan.guerrero.perez@correounivalle.edu.co Orcid: https://orcid.org/0000-0001-5839-8291

References

Inter nat ional Energy Agency ( IEA), 2018. ht t ps: //webs t ore. iea.org/co2-emissions-from-fuel-combustion-2018-overview

E. Vakkilainen, Steam Generation from Biomass: Construction and Design of Large Boilers. 1° ed. Amsterdam, Países Bajos: Butterworth-Heinemann, 2017.

Unidad de Planeación Minero Energética (UPME), Universidad Industrial de Santander, IDEAM, 2011. http://bdigital.upme.gov.co/handle/001/1058

A. Campos, A. Carvajal, C. Chávez, “Cogeneración - Más Que Azúcar , Una Fuente de Energía Renovable Para El Paísâ€, Asocaña, Cali, Colombia, mayo de 2017.

C. Wang, F. Wang, Q. Yang y R. Liang, “Thermogravimetric studies of the behavior of wheat straw with added coal during combustionâ€, Biomass and Bioenergy, vol. 33, no. 1, pp. 50–56, 2009.

E. Biagini, F. Lippi, L. Petarca y L. Tognotti, “Devolatilization rate of biomasses and coalbiomass blends: An experimental investigationâ€, Fuel, vol. 81, no. 8, pp. 1041–1050, 2002.

R. Bilbao, J. Mastral, M. Aldea y J. Ceamanos, “Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphereâ€, Journal of Analytical and Applied Pyrolysis, vol. 39, no. 1, pp. 53–64, 1997.

C. Avila, P. Cheng, T. Wu y E. Lester, “Morphology and Reactivity Characteristics of Char Biomass Particlesâ€, Bioresource Technology-Elsevier, vol. 102, no. 8, pp. 5237–5243, 2011.

C. Di-Blasi, “Combustion and Gasification Rates of Lignocellulosic Charsâ€, Progress in Energy and Combustion Science, vol. 35, no. 2, pp. 121–140, 2009.

E. Fisher, C. Dupont, L. Darvell, J. Commandré, A. Saddawi, J. Jones, M. Grateau, T. Nocquet y S. Salvador, “Combustion and Gasification Characteristics of Chars from Raw and Torrefied Biomassâ€, Bioresource Technology, vol. 119, pp. 157–165, 2012.

J. Wang, S. Zhang, X. Guo, A. Dong, C. Chen, S. Xiong, Y. Fang y W. Yin, “Thermal Behaviors and Kinetics of Pingshuo Coal/Biomass Blends during Copyrolysis and Cocombustionâ€, Energy and Fuels, vol. 26, no. 12, pp. 7120–7126, 2012.

C. Pang, E. Lester y T. Wu, “Influence of Lignocellulose and Plant Cell Walls on Biomass Char Morphology and Combustion Reactivity†Biomass and Bioenergy, vol. 119, pp. 480–491, 2018.

Ch. Guizani, M. Jeguirim, S. Valin, L. Limousy y S. Salvador, “Biomass Chars: The Effects of

Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivityâ€, Energies, vol. 10, no. 6, pp. 796, 2017.

Z. Wu, W. Yang y B. Yang, “Thermal Characteristics and Surface Morphology of Char during C o-Pyrolysis of L ow-Rank C oal Blended w ith M icroalgal Biomass: E ffects of Nannochloropsis and Chlorellaâ€, Bioresource Technology, vol. 249, pp. 501-509, 2018.

E. Lester, et al., “A Proposed Biomass Char Classification Systemâ€, Fuel Processing Technology, vol. 232, pp. 845-854, 2018.

S. Krerkkaiwan, C. Fushimi, A. Tsutsumi y P. Kuchonthara, “Synergetic Effect during Co-Pyrolysis/Gasification of Biomass and Sub-Bituminous Coalâ€, Fuel Processing Technology, vol. 115, pp. 11–18, 2013.

E. García, “Reactividad de carbones mezclados mediante caracterización morfológica de carbonizadosâ€, tesis de maestría, Escuela de Ingeniería Química, Universidad del Valle, Cali, Colombia, 2013.

C. Castro, V. Sanabria, “Morfología de carbonizados procedentes de mezclas carbón-bagazo de caña en un proceso de pirólisisâ€, tesis de pregrado, Escuela de Ingeniería Química, Universidad del Valle, Cali, Colombia, 2015.

J. Paredes, L. Sinisterra, “Morfología de carbonizados de mezclas carbón-bagazo obtenidos en atmósfera de N2 y CO2â€, tesis de pregrado, Escuela de Ingeniería Química, Universidad del Valle, Cali, Colombia, 2017.

E. Lester et al., “The Procedure Used to Develop a Coal Char Classification—Commission III Combustion Working Group of the International Committee for Coal and Organic Petrologyâ€, International Journal of Coal Geology, vol. 81, no. 4, pp. 333–342, 2010.

J. Shen, S. Zhu, X. Liu, H. Zhang y J. Tan, “The prediction of elemental composition of biomass based on proximate analysisâ€, Energy Conversion and Management, vol. 51, no.5, pp. 983–987, 2010.

M. Chan, J. Jones, M. Pourkashanian y A. Williams, “The Oxidative Reactivity of Coal Chars in Relation to Their Structureâ€, Fuel Processing Technology, vol. 78, no. 13, pp. 1539–1552,

S. Daood, S. Munir, W. Nimmo y B. Gibbs, “Char Oxidation Study of Sugar Cane Bagasse, Cotton Stalk and Pakistani Coal under 1 % and 3 % Oxygen Concentrationsâ€, Biomass and Bioenergy, vol. 34, no. 3, pp. 263–271, 2010.

A. Rojas y J. Barraza, “Pulverized Coal Devolatilisation Predictionâ€, DYNA, Vol. 75, no. 154, pp. 113-122, 2008.

S. Badzioch y P. Hawksley, “Kinetics of Thermal Decomposition of Pulverized Coal Particlesâ€, Industrial and Engineering Chemistry Process Design and Development, vol. 9, no. 4, pp. 521–530, 1970.

R. Barranco, M. Cloke y E. Lester, “The effect of operating conditions and coal type on char reactivity and morphology during combustion in a drop tube furnaceâ€, in The Ninth Australian Coal Science Conference, Brisbane, Australia, 2001.

J. Gibbins, C. Man y K. Pendlebury, “Determination of rapid heating volatile matter contents as a routine testâ€, Combustion Science and Techonology, vol. 93, no. 1, pp. 349-361, 1993.

E. Lester, “The Characterisation of Coals for Combustionâ€, Ph.D. disertación, dept. quím. ing., University of Nottingham, Nottingham, Inglaterra, 1994.

M. Carvalho, F. Lockwood, W. Fiveland y C. Papadopoulos, “Combustion technologies for a clean environmentâ€, Environmental Progress, vol. 16, no. 4, 2006.

A. Vyas, T. Chellappa y J. Goldfarb, “Porosity Development and Reactivity Changes of Coal–biomass Blends during Co-Pyrolysis at Various Temperaturesâ€, Journal of Analytical and Applied Pyrolysis, vol. 124, pp. 79–88, 2017.

H. Haykiri y S. Yaman, “Interaction between biomass and different rank coals during copyrolysisâ€, Renewable Energy, vol. 35, no. 1, pp. 288–292, 2010.

Y. Kar, “Bioresource Technology Co-pyrolysis of walnut shell and tar sand in a fixed-bed reactorâ€, Bioresource Technology, vol. 102, no, 20, pp. 9800–9805, 2011.

Ö. Onay, E. Bayram y Ö. Koçkar, «Copyrolysis of Seyitömer−Lignite and Safflower Seed: Influence of the Blending Ratio and Pyrolysis Temperature on Product Yields and Oil Characterization», Energy Fuels, vol. 21, no. 5, pp. 3049-3056, 2007.

D. Park, S. Kim, H. Lee y J. Lee, “Bioresource Technology Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactorâ€, Bioresource Technology, vol. 101, no. 15, pp. 6151–6156, 2010.

D. Vamvuka y S. Sfakiotakis, “Combustion behaviour of biomass fuels and their blends with ligniteâ€, Thermochimica Acta, vol. 526, no. 1–2, pp. 192–199, 2011.

Z. Wu, S. Wang, J. Zhao, L. Chen y H. Meng, “Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coalâ€, Bioresource Technology, vol. 169, pp. 220–228, 2014.

H. Junhao et al., “Influence of volatiles-char interactions between coal and biomass on the volatiles released, resulting char structure and reactivity during co-pyrolysisâ€, Energy Conversion and Management, vol. 152, pp. 229-238, 2017.

Published

2021-12-17

How to Cite

García-Saavedra, E. A. ., Torres-Velasco, A. ., Medina-Ramírez, C. D. ., Barraza-Burgos, J. M. ., & Guerrero-Pérez, J. S. . (2021). Morphology of chars of bagasse-coal mixtures: effect of particle size and concentration of bagasse. Revista Ingenierías Universidad De Medellín, 21(40), 44–66. https://doi.org/10.22395/rium.v21n40a4