Study of the Effect of the Geometry of a Typical Solar Dryer for Coffee Using CFD

Authors

  • Santiago Vélez-Piedrahita Universidad Nacional de Colombia - Sede Medellín
  • Héctor José Ciro-Velásquez Universidad Nacional de Colombia sede Medellín
  • Jairo Alexander Osorio-Saraz Universidad Nacional de Colombia sede Medellín
  • Esteban Largo-Avila Universidad Nacional de Colombia sede Medellín

DOI:

https://doi.org/10.22395/rium.v18n35a9

Keywords:

agroindustry, computational fluid dynamics, simulation, energy, temperature, radiation, solar dryer

Abstract

The objective of the present investigation was to computationally model a typical solar dryer for coffee, considering some alternative geometric configurations in the opening of windows to improve the thermal conditions within the drying structure which enable the water removal process of wet parchment coffee. The model was simulated in Ansys CFX® software. Simulation results showed that the geometry with an opening of 25 % in the air output window increased temperature in the coffee layer to 4.2 °C over room temperature, guaranteeing uniform drying, whereas the typical geometry with a 100 % opening increased temperature to 3.8 °C. When the maximum window opening for input and output of air was used, the relative humidity of air within the dryer decreased in comparison with the other geometries.

Downloads

Download data is not yet available.

Author Biographies

Santiago Vélez-Piedrahita, Universidad Nacional de Colombia - Sede Medellín

Ingeniero agrícola, magíster en Ingeniería Agroindustrial. Docente de cátedra, Universidad Nacional de Colombia, sede Medellín y Politécnico Colombiano Jaime Isaza Cadavid, Medellín, Colombia. Correo electrónico: svelezp@unal.edu.co. Orcid: https://orcid.org/0000-0001-9816-1977

Héctor José Ciro-Velásquez, Universidad Nacional de Colombia sede Medellín

Ingeniero mecánico, magíster en Ingeniería Mecánica, doctor en Ingeniería Agrícola. Profesor asociado, Universidad Nacional de Colombia, Medellín, Colombia. Correo electrónico: hjciro@unal.edu.co. Orcid: https://orcid.org/0000-0002-4398-0470

Jairo Alexander Osorio-Saraz, Universidad Nacional de Colombia sede Medellín

Ingeniero agrícola, magíster en Ingeniería de Materiales y Procesos, doctor en Ingeniería de Alimentos. Profesor asociado, Universidad Nacional de Colombia, Medellín, Colombia. Correo electrónico: aosorio@unal.edu.co. Orcid: https://orcid.org/0000-0002-4358-3600

Esteban Largo-Avila, Universidad Nacional de Colombia sede Medellín

Ingeniero agrícola, magíster en Ciencia y Tecnología de Alimentos. Profesor asistente, Universidad del Valle, sede regional Caicedonia, Colombia. Correo electrónico: esteban.largo@correounivalle.edu.co. Orcid: https://orcid.org/0000-0001-6047-1523

 

 

References

[1] B. Soediono, “Beneficio del café II: secado del cafe pergamino,†J. Chem. Inf. Model., vol. 53, p. 160, 1989.

[2] A. G. Ferreira, C. B. Maia, M. F. B. Cortez, and R. M. Valle, “Technical feasibility assessment of a solar chimney for food drying,†Sol. Energy, vol. 82, n.º 3, pp. 198-205, 2008.

[3] C. Brasil, A. Ferreira, L. Cabezas, S. Morais y T. Oliveira Martins, “Simulation of the airflow inside a hybrid dryer,†Arpapress, vol. 10, n.º 3, pp. 382-389, 2012.

[4] Y. Amanlou and A. Zomorodian, “Applying CFD for designing a new fruit cabinet dryer,†J. Food Eng., vol. 101, no. 1, pp. 8-15, 2010.

[5] R. Alvarez and J. Santamaria, “Dinámica de fluidos computacional aplicada al estudio de regeneradores térmicos,†Dyna, vol. 71, no. March, pp. 81-93, 2004.

[6] W. Nilnont, S. Thepa, S. Janjai, N. Kasayapanand, C. Thamrongmas, and B. K. Bala, “Finite element simulation for coffee (Coffea arabica) drying,†Food Bioprod. Process., vol. 90, n.º 2, pp. 341-350, 2012.

[7] Ideam, “Clima,†Ideam, [En línea], Disponible: http://www.ideam.gov.co/web/tiempo-y-clima/clima?inheritRedirect=true, 2010

[8] I. Campbell Scientific, “CR1000 Measurement and Control System,†Campbell Scientific, Logan, Utah, pp. 1-678. Disponible: https://shop.profec-ventus.com/images/Datasheets/Data_loggers/SCI/CR1000/cr1000-manual-2015.pdf, 2015.

[9] J. M. Jurado-Chaná, E. C. Montoya-Restrepo, C. E. Oliveros-Tascón, and J. García-Alzate, “Método para medir el contenido de humedad del café pergamino en el secado solar del café,†vol. 60, n.º 2, pp. 135-147, 2009.

[10] J. Osorio, I. Ferreira, K. Olivera, L. Barreto, and T. Norton, “a Cfd Based Approach for Determination of Ammonia Concentration Profile and Flux From Poultry Houses With Natural Ventilation,†Rev. Fac. Nac. Agron., vol. 69, n.º 1, pp. 7825-7834, 2016.

[11] Ansys, Ansys CFX-Solver Theory Guide, Canonsburg, Pensilvania: Ansys, 2013.

[12] C. B. Alvarenga et al., “Effect of the water vapor pressure deficit in the air on hydropneumatic spraying of artificial targets,†Biosci. J., vol. 30, n.º 1, pp. 182-193, 2014.

[13] P. Verboven, A. K. Datta, N. T. Anh, N. Scheerlinck, and B. M. Nicolaı̈, “Computation of airflow effects on heat and mass transfer in a microwave oven,†J. Food Eng., vol. 59, n.º 2-3, pp. 181-190, 2003.

[14] J. Besora, “Informe Técnico para la Construcción de un Secador Solar de Café,†Ing. Sin Front., 2016.

[15] S. Janjai, P. Intawee, J. Kaewkiew, C. Sritus, and V. Khamvongsa, “A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic,†Renew. Energy, vol. 36, n.º 3, pp. 1053-1062, 2011.

[16] J. Henao, “Evaluación del proceso de secado del café y su relación con las propiedades físicas, composición química y calidad en taza,†Tesis, Universidad Nacional de Colombia, sede Medellín, 2016.

Published

2019-12-01

How to Cite

Vélez-Piedrahita, S., Ciro-Velásquez, H. J., Osorio-Saraz, J. A., & Largo-Avila, E. (2019). Study of the Effect of the Geometry of a Typical Solar Dryer for Coffee Using CFD. Revista Ingenierías Universidad De Medellín, 18(35), 149–161. https://doi.org/10.22395/rium.v18n35a9