Power Quality Analysis in an Industrial System from Multipoint Measurements

Authors

  • J. Jeffer Vera Universidad Distrital Francisco José de Caldas
  • Francisco Santamaria Universidad Distrital Francisco José de Caldas http://orcid.org/0000-0002-0391-4508
  • Adolfo Andres Jaramillo Matta Universidad Francisco José de Caldas

DOI:

https://doi.org/10.22395/rium.v17n32a9

Keywords:

Harmonics, power quality, voltage sags, multipoint measurement, modelling, simulation.

Abstract

This paper proposes a methodology for the analysis of power quality in industrial electrical installations. Initially, a multipoint measurement is performed, then the phenomena that most affect the industry are identified and analyzed, then the system is modelled and adjusted to the real behavior, and some solutions are proposed and simulated. Subsequently, a case study is selected and the power quality study is carried out on the basis of the proposed methodology and according to the parameters of the NTC 5001 standard. Finally, the advantages of using multipoint measurement and modeling in power quality studies are established.

Downloads

Download data is not yet available.

Author Biographies

J. Jeffer Vera, Universidad Distrital Francisco José de Caldas

Investigador Grupo GCEM

Francisco Santamaria, Universidad Distrital Francisco José de Caldas

Ingeniería Eléctrica - Doctorado en Ingeniería - Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas

Docente Asociado

Adolfo Andres Jaramillo Matta, Universidad Francisco José de Caldas

Ingeniería Eléctrica - Doctorado en Ingeniería - Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas

References

[1] D. Castaldo, A. Ferrero, S. Salicone, and A. Testa, “A power-quality index based on multipoint measurements”, in 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, vol. 4, pp. 722-726.

[2] D. Castaldo, D. Gallo, C. Landi, R. Langella, and A. Testa, “Power quality analysis: a distributed measurement system”, in 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, vol. 3, pp. 487-492.

[3] C. Sankaran, Power Quality (Electric Power Engineering Series). Boca Ratón, Florida, 2002.

[4] Instituto Colombiano de Normas Técnicas, NTC 5001. Calidad de la potencia eléctrica, límites y metodología de evaluación en punto de conexión común. Colombia, 2008.

[5] Z. Klaic, K. Fekete, S. Nikolovski, and Z. Prekratic, “Propagation of the voltage sags through different winding connections of the transformers”, 11th International Conference on Electrical Power Quality and Utilisation. pp. 1-5, 2011.

[6] R. F. Mustapa, M. S. Serwan, N. Hamzah, and Z. Zakaria, “Effect of impedances line length to voltage sag propagation”, 2010 IEEE International Conference on Power and Energy. pp. 700-705, 2010.

[7] T. Sikorski and B. Solak, “Application of voltage and current transformations of different transformer winding connections in analysis of voltage dips propagation”, 2016 Electric Power Networks (EPNet). pp. 1-6, 2016.

[8] A. Baggini, Handbook of Power Quality. Bergamo, Italy: John Wiley & Sons, Ltd., 2008.

[9] S. Kamble and C. Thorat, “Classification of voltage sags in distribution systems due to short circuit faults”, 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM). pp. 257-264, 2012.

[10] A. S. Poste, B. T. Deshmukh, and B. E. Kushare, “Detection, classification & characterisation of voltage sag”, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). pp. 232-237, 2016.

[11] J. Caicedo, L. Navarro, E. Rivas, and F. Santamaria, “Voltage Sag Immunity Testing for Single-phase Electrical and Electronic Equipment”, in VII Simposio Internacional sobre Calidad de la Energía Eléctrica (SICEL), 2013, pp. 1-6.

[12] L. F. Navarro, J. E. Caicedo, E. Rivas, and F. Santamaría, “Evaluación de la inmunidad de un motor de inducción monofásico frente a huecos de tensión”, Inf. tecnológica, vol. 25, no. 1, pp. 97-108, 2014.

[13] A. Ohtake, F. Zhang, T. Fujimoto, and N. Nakayama, “Development of 200-Mvar class thyristor switched capacitor supporting fault ride-through”, 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 – ECCE ASIA). pp. 3857-3863, 2014.

[14] W. H. Ko and J. C. Gu, “Design and application of a thyristor switched capacitor bank for a high harmonic distortion and fast changing single-phase electric welding machine”, IET Power Electronics, vol. 9, n.° 15. pp. 2751-2759, 2016.

[15] M. Alonso Martínez, “Gestión óptima de potencia reactiva en sistemas eléctricos con generación eólica (tesis doctoral)”, Universidad Carlos III de Madrid, España, 2010.

[16] S. Ghosh and M. H. Ali, “Power quality enhancement by coordinated operation of thyristor switched capacitor and optimal reclosing of circuit breakers”, IET Generation, Transmission & Distribution, vol. 9, n.° 12. pp. 1301-1307, 2015.

[17] I. of E. and E. Engineers, IEEE Std 399-1997. IEEE Recommended Practice for Industrial and Commercial Power Systems Analysis. USA, 1997, p. 488.

[18] I. of E. and E. Engineers, IEEE Std 519-1992. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems. USA, 1992, p. 112.

[19] M. D. Kusljevic, “A Simple Method for Design of Adaptive Filters for Sinusoidal Signals”, IEEE Trans. Instrum. Meas., vol. 57, no. 10, pp. 2242-2249, Oct. 2008.

[20] T. Adrikowski, D. Buła, and M. Pasko, “Selection of method for reactive power compensation and harmonic filtering in industrial plant”, 2017 Progress in Applied Electrical Engineering (PAEE). pp. 1-5, 2017.

[21] J. Cheng, D. Chen, Y. Hu, and G. Chen, “An improved SHE algorithm and filter design method for high power grid-connected converter under unbalanced and harmonic distorted grid”, 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). pp. 594-599, 2017.

[22] J. Wang, M. Zhang, S. Li, T. Zhou, and H. Du, “Passive filter design with considering characteristic harmonics and harmonic resonance of electrified railway,” 2017 8th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT). pp. 174-178, 2017.

Published

2018-07-04

How to Cite

Vera, J. J., Santamaria, F., & Jaramillo Matta, A. A. (2018). Power Quality Analysis in an Industrial System from Multipoint Measurements. Revista Ingenierías Universidad De Medellín, 17(32), 199–212. https://doi.org/10.22395/rium.v17n32a9